See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/381632614

Mapping the Relevance of Digitalization for Photovoltaics

Presentation · June 2024

DOI: 10.13140/RG.2.2.36739.92962/1

CITATIONS 0 READS

1 author:

Jonathan Leloux LuciSun

92 PUBLICATIONS 675 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jonathan Leloux on 22 June 2024.

Mapping the Relevance of Digitalization for Photovoltaics

Intersolar Conference 2024

Utility-scale Solar Power II: Digitalization in PV Power Plants

Enhancing O&M through Digital Twinning, Data and Process Integration

Tuesday 18 June 2024, Munich

Jonathan Leloux, LuciSun, Belgium

Rapid growth of PV, expert scarcity and product lag necessitate adapted services

PV Sector Challenges

- Products and technical services are not keeping up with the pace of technological evolution
- The growth rate of projects is too fast for too few experts
- Need for adapted products and technical services to support growth

LuciSun: Pioneering End-to-End Solutions for All Phases of Solar Energy Projects

- LuSim Advanced simulation tools for solar energy projects
- Lunalytics Data analytics for performance analysis and fault detection
- LuConsult Expert consulting services / Technical Advisory
- LuData Datahub for solar resource and weather data
 - LuLab Research, Development and Innovation

٠

Pre-feasability	Design	Financing	Construction	Commissiong	Acceptance	Operation & Maintenance	Asset transfer
Preliminary design	Multi-parameter design optimization	Energy yield assessment Technical due diligence	Technical specifications Design review Site management guidance	Definition of performance tests	Quality control over site- measurements Site performance evaluation	Monitoring data analytics Fault detection and diagnosis	Historical and projected performance assessment Technical due diligence

Life at LuciSun: Getting involved in complex projects that badly need digitalization

Intersolar Conference, Mapping the Relevance of Digitalization for Photovoltaics, Jonathan Leloux, LuciSun, 18 June 2024, Munich 4

PV digitalization in the PV simulation chain: still lots of room for improvement

Current situation: Multiple steps involving different formats, frequent handoffs between users, leading to information loss and unreliability.

Current PV simulations are a bit like assembling IKEA furniture: lots of pieces, poor instructions, and someone always ends up with a leftover screw. Integrated digital platforms can help streamline the process.

Digitalizing PV Data: Some Honorable Mentions

PVsyst

First to digitalize PV modules and inverter data with PAN and OND files. Using super modern text files. Still practical today.

Solargis Evaluate 2.0

New proposal for PV database with quality checks, launching at Intersolar.

PVcase

Disrupting PV design by integrating more steps into their platform.

PV digitalization in data analytics: some examples from Belgium

PV digitalization in PV performance data: lots of talk, and some nice initiatives

Need for more PV performance data:

- Better knowledge of real PV field performance
- Feedback loop in PV simulation.
- Improved reliability, bankability, data-driven decision-making.
- Studies assessing PV fleet field performance still too few.
- Publications in scientific papers without data access.
- USA more advanced in PV performance data sharing.

Some very interesting public data sharing initiatives:

- IEA PVPS Task 13-ST2.5: PLR Determination Benchmark
- BDPV: Database with 15k+ PV systems, 10+ years data, France
- COPLASIMON, Europe, Sharing of data and analytics
- Observatório Fotovoltaico, PV metadata, Portugal
- PV fleet performance data initiative, NREL, USA
- DOE, USA, Solar Data Bounty Prize

🛟 OSFHOME 🗸							
t	IEA PVPS Task 13-ST2.5: PLR Determina	Metadata	Files	Wiki Analytics			
				Q Filter			
Na	ame 🔨 🗸	м	odified 🔺	~			
1	EA PVPS Task 13-ST2.5: PLR Determination Benchmark Study						
	+ 🎲 OSF Storage (United States)						
	+ 🛢 Pfaffstaetten						
	+ 🛢 RSE						
	+ SUS DOE NREL						
	+ 🛢 EURAC						
	+ SEDF						
	+ S FOSS						
	+ % US DOE-RTC-BaselineSystems						

PV digitalization is an enabler for smarter grids and energy communities

Aperçu géographique des installations de production d'électricité

Power production units, Switzerland.

Source: Swiss Federal Office of Energy, Swisstopo.

Digitalization optimizes energy communities by leveraging data from smart meters, distributed generation, storage systems, EV charging, DSOs, and weather data.

Definition of Renewable Energy Communities. Source: Compile Project, EC.

Smart meters are like the Fitbits for solar panels. They track energy production, storage, and consumption.

PV Digital Twins: Enhancing and accelerating professional training

- Interact with a virtual PV system to learn component functions and maintenance tasks.
- Analyze real-time data from the digital twin to understand performance and typical issues.
- Collaborate within the digital twin environment to foster teamwork.
- Simulate harmful situations without causing real damage or safety issues.
- Teach about the entire lifecycle of PV systems.

Digital twins: the virtual reality versions of solar farms. Like a video game where you get to save the planet, one solar panel at a time!

PV digitalization: Some concluding remarks

Website	
LinkedIn	
Twitter	
Email	
Phone	

https://www.lucisun.com

https://www.linkedin.com/company/lucisun

https://twitter.com/LuciSun11

Jonathan.leloux@lucisun.com

(+32) 468 08 37 38

This work was partially funded by The European Commission through the Horizon 2020 project SERENDI-PV (<u>https://serendipv.eu/</u>), which belongs to the Research and Innovation Programme, under Grant Agreement 953016

